(10分):若飞行物的质量m、能量E(实际为飞行物和地球组成系统的总机械能)和角动量L均为已知量,试用E、L、m和题给的已知参量To、2o等来表示轨道参量R、ε。
已知:正椭圆轨道(长轴沿极轴方向)在极坐R标下的形式(原点取为右焦点)为r(6)=1+ε cosφ,其中,R是轨道尺寸参量,是轨道偏心率,统称为轨道参量。
第二问(6分):写出点火(见图2c)后追击者c的轨道Rc(0c)的表达式,用ro、偏心率ε和φ表示。
第三问(6分):写出点火后追击者c的轨道周期Tc与目标A的周TA之比Tc/Ta,用ε和φ表示。
第四问:(18分)定义两个点火参数(见图2b):无量纲的速度大小改变δ= △υ/υ0 之间的夹角α,(重合时α=0,顺时针方向取为正方向),试用点火参数δ和α来表示追击者c的轨道的偏心率ε和εcosφ。
第五问(9分):考虑追击者c和目标A在第一类轨道汇合点(见图2c)相遇的情形.设自0时刻起目标A经过第一类轨道汇合点的次数为nA,追击者c经过第一类轨道汇合点的次数......
第六问(3分):将nA用8、α表出,固定8,试求函数nα(α)相对于α变化的两个简单.......
第七问(12分):如果取上述两個α0值之一。
(1)δ值有一个上限,求......
(2)令φA的初始值为.......
......
“还是熟悉的题目,熟悉的配方啊。”
第一道大题映入瞳孔中,徐川饶有兴趣的摸了摸下巴。
在题目映入眼帘后,埋在大脑深处的那些模糊记忆在努力复苏,带给他一丝丝熟悉的感觉。
物竞离重生前的他太远了,
本章未完,请点击下一页继续阅读! 第3页 / 共4页