想充分利用身边的资源,又不想承担因此而引发的责任。
终究是被余永俊跟龚家涛两个家伙给带坏了。
燕北大学,田言真还真没想到乔喻会在今天突然又给发了这么一条汇报。
因为要参加集训的缘故,其实田言真已经默认了这一周乔喻可以稍微休息一下,谁想到乔喻不但没休息,还向他展示了什么叫我认真起来有多可怕!
其实几何朗兰兹猜想的证明,数学界之外,并没有引发太多的讨论。
因为朗兰兹纲领对普通人来说太过遥远了,甚至亲和力都不如黎曼猜想、NS方程这些东西。
并不是说朗兰兹纲领就一定比解决这些世界级猜想更难,主要是任何涉及到基础理论统一性的东西,门槛都极高。
比如朗兰兹纲领需要解决的主要问题是建立代数数域上的伽罗瓦表示和自守形式之间的桥梁,这玩意只看定义就知道不花费几年功夫在代数几何、数论、表示论上,题干都根本看不懂。
真的,不信可以去各大数学院采访一下,光一个自守形式,都能让无数大学生、研究生学到焦头烂额,都还是半懂不懂,更有甚者直接一窍不通。
如果是朗兰兹纲领所涉及的自守表示…那真就更是呵呵了。毕竟自守形式只是抽象,而自守表示则是更高层次的抽象,描述的代数群如何作用在特定的Hilbert空间或Banach空间上,这些空间内的元素可能是解析函数或一些特殊结构。
而几何朗兰兹纲领则是研究代数曲线上局部系统和自守形式几何化之间的对应关系。它只是把经典朗兰兹纲领中涉及的数论对象替换为代数几何对象。
主要研究的就是把抽象的数论问题几何化,使其可以在代数几何框架中进行处理。这可以说不是解决具体问题,而是为数学家解决更具体的问题提供有价值的工具,具有如此广泛的应用潜力。
这个领域主要吸引的也是那些希望为数论和代数几何开辟新道路的数学家。
本章未完,请点击下一页继续阅读! 第7页 / 共17页