率密度分布状况可以模拟为下图的钟形曲线。横轴为身高的刻度,纵轴为身高等于此刻度的学生人数的概率;从图中可以看出,身高为平均值的学生人数是最多的,从平均值向两边延伸,人数逐渐减少,即特别矮的人很少,特别高的人很少,不高不矮的人是最多的。
回到笔者开始说的统计学,除非你能把所有的情况罗列出来,不然,我们所有传播的文化认识与知识都是用少量或者大部分个体推断其整体状态。虽然不能保证完全准确,但是也是很多时候需要使用的方法,同时,人类也不可能全部罗列出来。因此我们所有的理解认识都是存在局限性的。只有谈到做的层面,处于百科归类图的最下层才是对事物获知最完整的。
那么好了,摆地摊的为什么现在没有了,这么好赚,你为什么不去摆一下?如果你的学生只有几个人,而且全部都是集中在根号2的高度,请问会不会服从正态分布呢?
可以说,如果你摆这个地摊,如果一天不上几十个人去摸球,最后会亏死你!
摸到3个白球概率为1/240的前提条件必须是摸了足够多的次数——只有你知道一个事物的整体状态,你才能知道分布状态(概率)。
而在猜中鬼的概率中,第一张猜中的概率为1/3,是因为全部只有三张牌,当第一张牌揭开之后,接下来猜中的概率是1/2,是因为这时候全部只有两张牌,第一张牌我们已经100%知道了不是鬼了,而不是1/3的概率知道了这张牌!
所以,我们做产品生产的时候,会对不良品进行评估,假如试产10台产品,有一台出了问题,你可以认为这次生产的不良率为10%,但是你是不能得出结论“假如生产1000台,其不良概率也为10%。”
因为你这10台不是属于全部产品的,如果你要推测1000台的情况话,那全部产品是1010台),而在不同位置采样,如A,B,C三个不同的位置(分别从这三处抽出来10台来检验),这些不良的概率都是有可能不一样的。也就是是否预测准确跟采样的位置有关。
如果你要有足够的信心保证推测准确,那么采样的数量(或产品的生产条件)就要与全部数目的不能相差太大,数目越大越能涵盖越多的位置。(无论是否属于正态分布)
现在有很多报告的数据都是非常虚假,不能作为参考。比如有一份来自于某某权威大学和某某著名金融机构做了关于中国自有住房拥有率的调查。结论是:近9成中国家庭拥有住房。如果你不是活在这个国度深有体会而去质疑,你就很容易
本章未完,请点击下一页继续阅读! 第6页 / 共7页